

VERTRAULICH

Whitepaper
ARCHITECTURE-CENTRIC, MODEL-BASED SYSTEMS
ENGINEERING (ACMBSE)

VERSION DATUM AUTOR ÄNDERUNG(EN)

1.2 21.08.2024 Enrico Seidel Translation from 1.2 GE

Architecture Centric Model Based Systems
Engineering (ACMBSE)_EN.docx

 Page 2 von 26 21. August 2024

VERTRAULICH

INHALT

1 Introduction .. 3
2 Architecture-Centric MBSE ... 3
3 The Importance of an Architecture Framework .. 4
4 The 3 Dimensions of a System Architecture ... 5
5 The Model Viewpoints of iSEF .. 6
6 The Abstraction Levels of iSEF .. 8
7 Hierarchy Depth .. 10
8 Linking Elements Between Model Viewpoints .. 11
9 Methodical Modeling Steps for System Design .. 13
9.1 Step 1 - Feature Definition of the System .. 14
9.2 Step 2 - System & Kontext Definition ... 15
9.3 Step 3 - Recursive Requirements Engineering .. 16
9.4 Step 4 - Operational Analysis of the System ... 17
9.5 Step 5 - Detailed Functional Design ... 18
9.6 Step 6 - Design of Logical Components... 19
9.7 Step 7 - Technical System Development ... 20
9.8 Step 8 - Physical Realization of the Architecture ... 22
10 Conclusion and Outlook .. 23
11 References .. 25
12 Biography .. 26

Architecture Centric Model Based Systems
Engineering (ACMBSE)_EN.docx

Page 3 von 26 21. August 2024

VERTRAULICH

SUMMARY

In the past ten years, the automotive industry has significantly transformed from traditional document-based
systems engineering to a more architecture-centered and model-based systems engineering (MBSE). This
change is driven by the rapidly increasing complexity and the challenges of managing system descriptions
with conventional document-based methods. This white paper explores how MBSE can support this
transformation using the architecture framework developed by the author. The author proposes an
architecture-centered approach to systems engineering based on various viewpoints. Focusing on architecture
centrality and using models allows for more efficient and effective complex system analysis, development, and
design. The author also uses an example from the automotive sector to demonstrate how this approach can
be practically integrated into a development workflow.

1 INTRODUCTION

Like other industrial sectors, the automotive industry faces challenges in today's rapidly changing environment
concerning productivity, profitability, and human capital (Nayak et al., 2022). The transition to a software-based
ecosystem has required automotive manufacturers to achieve significant technological advancements in
multiple functional areas (Burkacky et al., 2021). The growing demand for enhanced system capabilities and
efficiency in development is driving the use of system models. Traditional document-based systems
engineering is no longer sufficient to manage the complexity of software-driven functions in resilient and safety-
critical systems. Instead, an MBSE approach is necessary to facilitate compliance with critical standards such
as ISO 26262 (ISO 1 2018).

The author of this article takes it a step further by placing architecture at the forefront. Traditional document-
based systems engineering has proven inadequate for modern complex systems such as automotive systems
and components. Consequently, an architecture-centered model-based approach is gaining importance,
referred to in this paper as Architecture-Centered Model-Based Systems Engineering (ACMBSE) (Brooks et
al., 2007). ACMBSE provides a means to ensure the design and implementation of system behavior through
rigorous models and simulations, making it an essential methodology for organizations like automotive
suppliers to adapt to the changing demands of the automotive industry.

This publication examines the adoption of ACMBSE and demonstrates how this approach can be used for
system analysis, functional development, the design of logical elements, and technical system design,
extending to the implementation of electronic control units, including their physical realization.

2 ARCHITECTURE-CENTRIC MBSE

ACMBSE is a systems engineering approach that strongly emphasizes the central role of system architecture
in the development of complex systems, as illustrated in Figure 1. ACMBSE is based on the principle that the
architecture of a system and all its subsystems provides a coherent overview of the system, including its
representations of the components, their interrelationships, and the overall system behavior, encompassing
both software and hardware aspects. Therefore, ACMBSE acts as a bridge to heterogeneous, domain-specific
engineering disciplines. This approach further requires that all other aspects of systems engineering, such as
requirements, functional safety, security and privacy, system variability, reliability, verification, and validation,
be aligned with the architecture and contribute to its viewpoints.

Architecture Centric Model Based Systems
Engineering (ACMBSE)_EN.docx

Page 4 von 26 21. August 2024

VERTRAULICH

Compared to document-based development, ACMBSE offers several advantages: improved communication,
information maintainability, enhanced ability to manage system complexity, increased product quality, and
excellent knowledge retention.

Figure 1: The Architecture Framework as a Link for the Overall Product Description

3 THE IMPORTANCE OF AN ARCHITECTURE FRAMEWORK

SysML (OMG 2018) is a widely used language in systems engineering that enables model-based
development. However, it does not define rules and methods for building system architecture and design within
a specific domain (ISO 2022). To achieve a cross-domain platform, it is crucial to have a standardized set of
methods and tools for developing system products and their architecture artifacts.

The use of structured frameworks such as Harmony (Douglas 2017), OOSEM (Friedenthal et al., 2015), or
MOFLT (Ducamp et al., 2022) is essential for the consistent implementation of MBSE on a large scale. Each
framework has its strengths within domain-focused architecture frameworks, including UPDM (UPDM 2017),
which combines DoDAF (Department of Defense Architecture Framework) and MoDAF (Ministry of Defense
Architecture Framework). However, the author recognized that these frameworks, primarily developed for
defense, did not fully meet the specific requirements of the automotive industry. Challenges such as reusability,
automated model verification, systematic use of viewpoints on the model, system abstraction levels, and
hierarchy depth as prerequisites for the ACMBSE approach were not entirely addressed. Even frameworks
like TOGAF (TOGAF 10) and Zachman (Zachman 2023), which aim to capture enterprise perspectives, would
require adjustments to meet the technical aspects of the automotive industry. In this context, only the SYSMOD
(Weilkiens 2020) framework proved suitable and met the author's needs for tailored viewpoints and modeling
techniques.

bdd [Package] ACMBSE [Architecture Framework as Binding Element for the Entire Product Description]

Reliability

Safety

Implementation

TestingProjectMgt

Variability

Requirements

Security

Security Safety

Requirements Reliability

Variability Implementation

Project Mgt. Testing

System

Mechanic
Quality /

Conformity

Electric /
Electronic

Software

invenio Systems Engineering Framework

«satisfy,import» «satisfy»

«include» «include»

«include,import» «include,trace»

«include,verify»«include,refineElement»

Architecture Centric Model Based Systems
Engineering (ACMBSE)_EN.docx

Page 5 von 26 21. August 2024

VERTRAULICH

The author intended to use his framework primarily for the automotive sector and recognized the need to
include the criteria mentioned above for holistic system design, including developing electronic control units
and components.

For these reasons, the author previously developed an architecture framework (CAF) at Continental AG, which,
with the transition to invenio AG, has now been significantly further developed and is to be published as the
invenio Systems Engineering Framework (iSEF). Recently, this framework has evolved into a mature modeling
methodology, including language and tool set, defining all the necessary methods and process steps to
seamlessly develop architecture and design specifications for systems, software, and hardware engineers. In
addition to the usual rules and methods that extend the SysML language, iSEF is intended to provide a
comprehensive set of predefined architecture artifacts, pre-developed design elements, and reusable
functions, supporting the development of standardized automotive functions and platforms with shorter time-
to-market. Furthermore, iSEF ensures full compliance with all essential ISO standards, such as ISO 42010
(ISO 2022) and ISO 15288 (ISO 2015).

For implementing iSEF, IBM Rhapsody (IBM 2022) was chosen as the modeling tool. It is embedded in the
IBM Engineering Lifecycle Management (ELM) platform and uses a fully customized domain-specific profile
based on SysML.

4 THE 3 DIMENSIONS OF A SYSTEM ARCHITECTURE

As systems become increasingly complex (INCOSE 2022), it becomes difficult for a single system engineer to
understand its functionality, properties, and performance comprehensively. Therefore, systems must be
divided and organized into smaller units or subsystems. Each subsystem has a specific task, allowing
architects and designers to focus on the details of that particular part. Examples of such complex systems
include vehicles and airplanes, where many organizational units work on different parts of the system to create
the overall system architecture.

Figure 2: The Three Dimensions of System Architecture Description

bdd [Package] iSEF [The 3 Dimensions of an Architecture]

FunctionA

FunctionA1ElementB

ElementA

System Abstraction Levels
[1..5]

Architecture Viewpoints
[1..5]

Hierarchy Depths
[1..n]

User Domain Level (L-UD)

Environment Level (L-EV)

Domain System Level (L-SS)

System Product Level (L-SP)

Product Component Level (L-PC)

Operational Modeling Viewpoint (OV)

Functional Modeling Viewpoint (FV)

Logical Modeling Viewpoint (LV)

Technical Modeling Viewpoint (TV)

Physical Modeling Viewpoint (PV)

FunctionA

itsFunctionA11 itsFunctionA21

Hierarchy Level 2 Hierarchy Level 2

Element of Hierarchy Level 1

Example

ElementC

e.g. Vehicle Environment Level

e.g. Vehicle Level

e.g. Vehicle System Level

e.g. ECU and Device Level

e.g. SW/HW Component Level

e.g. Vehicle Context, USe Cases

e.g. Functional Design, Functions Chain

e.g. Logical Node Implementation

e.g. Technical System Components

e.g. Wire Harness, Vehicle Integration

Architecture Centric Model Based Systems
Engineering (ACMBSE)_EN.docx

Page 6 von 26 21. August 2024

VERTRAULICH

With the iSEF, the author introduces three dimensions of system architecture: the model viewpoints on the
system, the system abstraction levels, and the hierarchy depth. These three orthogonal dimensions, as applied
to the automotive domain, as shown in Figure 2, enable a structured approach to coherent system architecture
development.

5 THE MODEL VIEWPOINTS OF ISEF

As part of developing a framework to meet the needs of a development organization, the author has identified
five essential architecture-relevant model viewpoints (as shown in Figure 3) to analyze, define, and create a
system with a strong focus on reusability. The emphasis is on addressing the concerns of various stakeholders.
The operational viewpoint, functional viewpoint, logical viewpoint, technical viewpoint, and physical viewpoint
of the model are introduced. The directly architecture-relevant viewpoints are defined as follows:

Figure 3: Relationships Between Viewpoints and the Problem/Solution Space

Operational Viewpoint (OV):

As part of the problem space, the Operational Viewpoint (OV) focuses on analyzing the system to be
developed in alignment with the operational concept (ISO 2 2018). It defines the System of Interest (SoI)
within its contextual environment and identifies its subsystems and interfaces through ports,
representing communication's logical and technical aspects. The primary objective of the OV is to
provide a visual representation of the system processes and use cases, detailing the intended
operations and behaviors of the system and refining them into system activities. Additionally, the OV
outlines the sequences of interactions between the system elements, clarifying how communication
occurs within the SoI being analyzed.

bdd [Package] FirstDimension [Refinement of Problem and Solution Space and Satisfaction of Concerns of the Functional and Technical Domain]

Operational Viewpoint (OV)

Concern: How will the system operate in its environment?

Problem Space

Concern: What are the
required capabilities of
the system?

«refine»

Functional Domain

Concern: What are the
stakeholders needed
Functional Features of a
system?

«refine»

Requirement Viewpoint (RV)

Concern : What are the stakeholder's requirements satisfied by
architecture elements at the given viewpoints?

«satisfy»

«define»

Functional Viewpoint (FV)

Concern: What functionaliy does the system need to do?
«refine»«refine»

Logical Viewpoint (LV)

Concern: What are the implementable elements of a system?
«refine»

Technical Viewpoint (TV)

Concern: How does the system need to be technically built?

Physical Viewpoint (PV)

Concern: How does the system need to be actually realized?

Variability Viewpoint (VV)

Concern: What are the variability points of functional and
technical features for a system?

«define»

Solution Space

Concern: What are the
solutions to achieve the
required capabilities of a
system?

«refine»

«refine»

«refine»

«define»

Technical Domain

Concern: What are the
stakeholders desired
Technical Features for a
system?

«refine»

«refine»

«define»

Architecture Centric Model Based Systems
Engineering (ACMBSE)_EN.docx

Page 7 von 26 21. August 2024

VERTRAULICH

Functional Viewpoint (FV):

The Functional Viewpoint (FV), which is still part of the problem space, focuses on functional design
following the system analysis. It defines consolidated and reusable function blocks that encapsulate
behavior models based on activities and state machines (resulting from the operational analysis in the
OV). The FV facilitates the definition of structured and standardized function interfaces with their
exposed operations, which ease the flow of information between functions. Additionally, the FV allows
for the visualization of function blocks according to predefined decomposition strategies, enabling a
comprehensive understanding of the entire functional behavior of the System of Interest (SoI).

Logical Viewpoint (LV):

The Logical Viewpoint (LV) marks the transition to the solution space and focuses on implementing a
targeted system, considering given constraints and platforms. It groups the function blocks from the FV
into implementable units, known as logical nodes. A primary objective is visually representing the system
from an implementation perspective, including the connections between nodes and the definition or
reuse of logical interfaces using standardized signals and services. Additionally, the LV outlines the
detailed design of a logical unit, such as an application or driver within a specific system environment,
while considering the given non-functional requirements.

Technical Viewpoint (TV):

As part of the solution space, the Technical Viewpoint (TV) focuses on the constraints and technologies
necessary to construct the technical system. The main objective of the TV is to provide an execution
environment for the logical nodes and their integrated functions. The TV takes the logical nodes from
the LV and connects them with the required hardware (HW) and software (SW) interfaces, thereby
linking executable functions, logical nodes, and technical components. The TV bridges the HW and SW
elements, integrating the system design within the specified hardware-specific boundaries or
technological constraints.

Physical Viewpoint (PV):

The Physical Viewpoint (PV) in the solution space ultimately focuses on realizing the desired end-user
systems or subsystems using available physical products and components while ensuring that non-
functional performance and quality requirements are met. This viewpoint enables the visualization of
block diagrams of the hardware architecture concerning system integration using the developed or
existing technical/physical components and elements. The PV also establishes a tightly coupled
connection between the electrical/electronic (EE) architecture and the EE detailed design (e.g.,
hardware schematics), optimizing the E/E development process.

The modeling of requirements (the Requirements Viewpoint) as well as the creation of variability models (the
Variability Viewpoint), as defined by ISO 26550 (ISO 1 2015) and ISO 26580 (ISO 2021), extend the model
viewpoints with two additional viewpoints, as shown in Figure 3, which are also integral parts of the
development process. The further, indirectly architecture-relevant viewpoints are defined as follows:

Architecture Centric Model Based Systems
Engineering (ACMBSE)_EN.docx

Page 8 von 26 21. August 2024

VERTRAULICH

Requirements Viewpoint (RV):

The Requirements Viewpoint (RV) manages and represents textual requirements within the model by
tracking them with other viewpoints using the zigzag method (Weilkiens 2020). It defines customer
requirements in the specification document and system requirements in the requirements specification,
controls the definition of system element requirements after system decomposition, and supports
traceability between requirements and architecture elements. The RV is crucial in the iSEF architecture
model and bridges classic systems engineering and ACMBSE. The RV becomes particularly important
when models cannot be exchanged between suppliers and OEMs, and a system can only be aligned
through a requirements-based design specification.

Variability Viewpoint (VV):

The Variability Viewpoint (VV) manages system variants based on a feature catalog, which describes a
system's functional and technical characteristics (features) from the perspective of stakeholders or end
users. The VV models follow ISO 26550 (ISO 1 2015), where dependencies are organized hierarchically
and in terms of variability. The VV uses variation points on architecture elements to filter the variability
of a system according to the given features. A variability model within the VV influences other
architecture elements regarding their visibility to user-perceivable functions and technical solutions. The
VV is crucial for managing platform and product lines, particularly useful for complex systems with many
variants, to increase reusability within engineering organizations (Forlingieri 2022).

The underlying iSEF modeling profile (iSefML) is based on the SysML language and facilitates using all the
modeling mentioned in earlier viewpoints, optimized for variable system development processes. The profile
includes a customized model browser, uses drawing tools modified for the required element usage, and
implements interactive rule sets that ensure the correctness of the composition and interaction between model
elements during the modeling process.

6 THE ABSTRACTION LEVELS OF ISEF

The technical and functional scope of a system, as well as the depth to which the system should be examined,
are defined by the System Abstraction Levels, which form an artificial boundary but not an inherent property
of the system. They serve more as a category or classification for any possible system (with a focus on vehicle-
related systems here), as shown in Figure 4. A system abstraction level can refer to the process of abstraction
or the generalization of a system's physical, spatial, or temporal details, or the abstraction may instead focus
on a user-perceived model or representation of information from the real world. In iSEF, the system abstraction
levels are defined according to the framework shown in Figure 4, with five abstraction levels applied to a
system's domain. These are:

Environment Abstraction Level (L-EV):

The Level of External View (L-EV) encompasses the context of a System of Interest (SoI), such as the
vehicle environment or mobile communication system, which interacts with its immediate operational
environment. The L-EV pertains to the interaction with the user and the corresponding environmental
effects that the system can respond to or stimulate. Furthermore, this abstraction level includes modeling
interactions between various independent systems and functionalities within a System of Systems (e.g.,
traffic management systems, fleet management systems, and cloud solutions).

Architecture Centric Model Based Systems
Engineering (ACMBSE)_EN.docx

Page 9 von 26 21. August 2024

VERTRAULICH

User Domain Abstraction Level (L-UD):

The Level of User Domain (L-UD) encompasses a system, including its composite subsystems within a
domain (e.g., vehicle, smartphone, airplane, etc.). The L-UD focuses exclusively on a system with which
a user interacts or a system that can directly respond to environmental influences. The physical size or
complexity of the systems is not a determining factor here. For example, an airplane has a significantly
higher number of subsystems on the subsequent abstraction levels than a smartphone. At this level, the
systems' physical size or inherent complexity is not the primary focus. Instead, the emphasis is on how
the system functions as a whole, with attention to how it meets the user's needs and interacts with its
environment.

Domain System Abstraction Level (L-DS):

The Level of Domain Subsystems (L-DS) encompasses subsystems (e.g., Advanced Driver Assistance
Systems) of a user system within a domain that focus on a specific set of functions, communication, or
technologies that are no longer directly visible to the end user. Integrative subsystems typically consist
of at least two or more system products at this abstraction level. Examples include a vehicle door with
all its mechanical, electromechanical, and electronic assemblies or a mobile reception system in a
smartphone. The L-DS abstraction level is crucial for understanding how these subsystems interact
internally and with other parts of the broader system, ensuring that they work seamlessly to support the
overall functionality and reliability of the embracing user system.

System Product Abstraction Level (L-SP):

The Level of System Products (L-SP) encompasses all technical systems within a subsystem, such as
within the vehicle domain. This subsystem is defined by integrating all discipline-specific components
(software, electrical/electronic, mechanical) to create a physical system as a product. This typically
includes control units (ECUs), technical actuators, sensors, and the functions to be integrated into these
systems. At L-SP, the focus is on how these diverse components come together to form functional units
that can be deployed in the field. The functions integrated into these systems at L-SP are designed to
meet specific performance, safety, and reliability standards, making this level crucial for ensuring that
the overall subsystem performs as expected.

Product Component Abstraction Level (L-PC):

The Level of Physical Components (L-PC) encompasses all system components described within a
single discipline to realize a system product. This also includes interdisciplinary interfaces such as the
hardware-software interface or communication protocols involving the components. The discipline-
specific components then serve as the starting point for further decomposition into specific hardware
and software architecture descriptions. At this level, each element's detailed design and specification
are considered, and the discipline-specific components and their interfaces set the stage for further
decomposition and development of the subsequent hardware and software architecture.

Every system and its subsystems can be categorized into one of the system abstraction levels. When a system
is decomposed, a subsystem resulting from a decomposition step may be considered at a lower system
abstraction level than the original parent system, provided no further hierarchy is applied. Development always
begins at the system abstraction level of the system context, though the L-EV level does not necessarily need
to be included. The System of Interest (SoI) determines which system abstraction level should be used for the
context and thus serves as the starting point.

Architecture Centric Model Based Systems
Engineering (ACMBSE)_EN.docx

Page 10 von 26 21. August 2024

VERTRAULICH

The use of system abstraction levels offers several advantages. At each abstraction level, a new system
context can be derived, enabling clear interactions between system elements such as functions, nodes, and
components. Communication (interaction) between elements is only permitted on the same abstraction level,
which prevents "level-hopping" between systems and components on different abstraction levels.

Similarly, system abstraction levels enable decomposition models with precisely formulated rules that specify
which element meta-classes may be used at each abstraction level. This allows for the implementation of
machine-verifiable rules for all architecture elements in the architectural description through tool-supported
mechanisms supported by the iSEF profile. This ensures the system modeling is valid and follows predefined
decomposition and integration schemes. This practice facilitates communication among systems engineers
from different fields and companies (such as suppliers) because they can focus on the relevant abstraction
level. Clear handover rules govern the exchange of elements. As corresponding specifications and
requirements must be at each abstraction level, associated specification and requirements models are also
necessary.

Figure 4: Example of the 5 Applied Abstraction Levels for the Vehicle Domain

7 HIERARCHY DEPTH

When a system is analyzed at an abstraction level and modeled across all viewpoints, this is referred to as a
complete architecture step. Within this process, the system and function blocks may exhibit different levels of
granularity across the various viewpoints.

Therefore, hierarchy depths define the granularity of a system's decomposition within a specific viewpoint's
actual system abstraction level, as illustrated in Figure 5.

bdd [Package] SecondDimension [System Abstraction Levels within Domains]

Environment Abstraction Level (L-EV)

Scope: Encompasses the context of a system or arrary of systems of
interest within the vehicle domain or other external domains interacting with
its immediate operating environment.

Vehicle Abstraction Level (L-VE)

Scope: Encompasses the vehicle as a system within the vehicle domain
including its composed sub systems a user or other systems are interacting
with respectively environmental effects the system can react to or stimulate.

Vehicle System Abstraction Level (L-VS)

Scope: Encompasses systems within the vehicle domain focusing of a
specific feature set, communication or technology composed out of 2 or
more system products which are not directly visible to the end-user.

System Product Abstraction Level (L-SP)

Scope: Encompasses systems within a sub system of the vehicle domain
and the composition of all discipline-specific components (SW, EE, ME) that
are defined to build an integrated system as a product.

Product Component Abstraction Level (L-PC)

Scope: Encompasses the definition of all components that can be described
within a single discipline to realize a system product under development as
well as the definition of all interdisciplinary interfaces.

Abstraction Level 0

Abstraction Level 1

Abstraction Level 2

Abstraction Level 3

Abstraction Level 4

Examples Automotive

 V2X communication
 Traffic Systems
 Cloud Connection

 Operating a vehicle
 Vehicle as a system
 Functional Safety

 ADAS definition
 Light Systems
 Access System

 Control Units
 Sensors, actuators
 Switches, devices

 Processing units
 SW components
 HW components

Architecture Centric Model Based Systems
Engineering (ACMBSE)_EN.docx

Page 11 von 26 21. August 2024

VERTRAULICH

The lowest and preferred number of hierarchy depths is 1, which helps keep the system decomposition simple.
However, it is essential to note that the hierarchy depth does not have to be consistent across the viewpoints
within a given system abstraction level. This is because the granularity of the decomposition can vary
depending on the decomposition scheme applied to each viewpoint, resulting in different hierarchy depths.

To ensure standardized system decomposition, the iSEF offers a set of reference decomposition models that
guide architects in breaking down the system and functions in a way that produces compatible and reusable
building blocks.

Figure 5: Example of a Hierarchy Depth of "2" in the FV and "1" in the LV at the L-PC

8 LINKING ELEMENTS BETWEEN MODEL VIEWPOINTS

Ensuring a coherent architectural description across different viewpoints requires establishing linking patterns
between the architectural elements within the same modeling viewpoint and between elements across different
perspectives. The iSEF method addresses this need by introducing extended SysML semantics. Within the
framework, elements from various perspectives are interconnected by integrating functional elements directly
into logical elements, which are then composed into technical elements. These technical elements are further
incorporated into physical components.

The linkage of all involved architecture elements, as illustrated in Figure 6, is strengthened through their
interconnected interfaces, which are aligned and checked for consistency by a model checker. Consistency is
maintained through nested port modeling, where Proxy Ports are embedded within Full Ports via an interface
definition, and a logical signal encapsulates one or more functional values. This signal is transmitted via a
technical interface, carried along a technical line, and connected to a physical interface. This physical interface
represents the solution for achieving overall connection across all viewpoints.

bdd [Logical View] LogicalViewpoint [Example Hierarchicy Levels L-SP for FV and LV]

FunctionalViewpoint

FunctionalComposition
«LogicControl»

ElementaryFunctionA
«Elementary Function»

1
FunctionA

ElementaryFunctionB
«Elementary Function»

1
FunctionB

FunctionalComposition
«LogicControl»

FunctionB
1 «ElemFctPart»

pInput

pOutput

FunctionA
1 «ElemFctPart»

pOutput

pInput

pValueOutputpValueInput

LogicalViewpoint

Application
«VFB Node»

1
CompositionalFunction

Application
«VFB Node»

CompositionalFunction
1 «LogicControlPart»

pValueOutputpValueInput

pSignalIn pSignalOut

Hierarchy
Level 1

Hierarchy
Level 2

Hierarchy
Level 1

Architecture Centric Model Based Systems
Engineering (ACMBSE)_EN.docx

Page 12 von 26 21. August 2024

VERTRAULICH

The technical and physical constraints that come into play at this modeling step dictate that the physical
architecture is based on technological decisions made from the technical viewpoint. Furthermore, the technical
modeling depends on architectural choices made from a logical viewpoint. The logical modeling viewpoint, in
turn, reflects an implementation based on a specified functional design created in the functional viewpoint. The
functional design from the functional viewpoint is also seen as the outcome of an operational analysis that has
evaluated the activities and use cases outlined in the operational viewpoint.

Figure 6: Linking Elements and Interfaces Across Successive Viewpoints

Figure 6 also illustrates the use of the iSefML stereotype InterfaceBehaviorBlock, which is introduced in
addition to SysML. This specific interface block facilitates the connection of elements and the formal transfer
of information across viewpoints, both statically and dynamically (through simulation). This approach enables
the creation of semiformal architectures and designs that comply with the highest safety integrity levels (ISO
26262, 2018). Modeling tools like Rhapsody can apply these principles to automate notations and semantic
verifications, achieving machine-based model verifiability. This principle is essential because it allows for a
seamless connection of all architectural elements across different abstraction levels and viewpoints. On one
side, iSEF enables the coherent linking of composed parts, ensuring that every element within the model is
logically connected to its corresponding elements in other viewpoints. This maintains the integrity of the system
architecture and facilitates a clear and structured decomposition of the system into its functional, logical,
technical, and physical components. On the other side, this view-linking approach allows the architectural
elements to fit together like puzzle pieces, where interfaces between elements in one viewpoint align perfectly
with those in the next. This alignment ensures that as you move from one architectural view to the next, the
elements are not just placed haphazardly but deliberately designed to integrate seamlessly.

bdd [Help Page] MatryoshkaPrinciple [Architecture View Element Linking via Nested Ports]

FunctValue
«V alue»

Values

value:type

IvFunctValue
«interfaceBlock, func tional»

Values

«flowProperty» value(Out):Func...

LogicalSignal
«Signal»

Values

value:FunctValue

TechnicalLine
«Line»

Values

signal:LogicalSignal

ItTechnicalLineTx
«interfaceBehaviorBlock,t echnical»

Values

«flowProperty» line(Out):Techn...

signal
«logica l,proxy»

PhysicalLead
«Lead»

Values

line:TechnicalLine

IpPhysicalLeadTx
«interfaceBehaviorBlock,physical»

Values

«flowProperty» lead(Out):Physi...

line
«technical,proxy»

Interface Definitions for Ports (Matryoshka Principle) according CafML

IsLogicalSignalTx
«in terfaceBehaviorBlock,logical»

Values

«flowProperty» signal(Out):Logi...

value
«functional ,proxy»

Devicet:PhysicalArchitectureElement
1 «AD»

Component:TechnicalArchitectureElement
1 «GD»

Node:LogicalArchitectureElement
1 «VCN»

Function:FunctionalArchitectureElement
1 «ActuationFunc tionPart»

Activity

FunctionalPort
«proxy,functional»

value
«functional,proxy»

value:FunctValue

LogicalPort
«logica l,ful l»

signal
«logica l,proxy»

signal:LogicalSignal

TechnicalPort
«technical, full»

line
«technical,proxy»

line:TechnicalLine

PhysicalPor t
«physical,full»

value:FunctValue signal:LogicalSignal line:TechnicalLine

Architecture Centric Model Based Systems
Engineering (ACMBSE)_EN.docx

Page 13 von 26 21. August 2024

VERTRAULICH

Further insights into the connection between viewpoints and system decomposition can be found in a previous
publication by Continental (Seidel & Forlingieri, 2023).

9 METHODICAL MODELING STEPS FOR SYSTEM DESIGN

After a brief introduction to the principles for constructing a system architecture, including the previously
introduced seven model viewpoints, the author demonstrates system modeling using ACMBSE through a
possible workflow, which, among other things, illustrates the development of a system model using iSEF. The
example presented in the following section focuses on the design and implementation of the exterior lighting
functions of a vehicle based on an actual development scope. For simplicity, only a tiny portion of the overall
scope is depicted in this paper.

The author demonstrates eight fundamental modeling steps from analysis to design, which are outlined as
follows:

1. Feature Definition using the Variability Viewpoint (VV): This involves defining functional and
technical features and their relationships in terms of variability, managed through variation points.

2. System Context and Definition of the System of Interest using the Operational Viewpoint
(OV): This includes the composition and interaction with external elements (actors).

3. Requirements Derivation using the Requirements Viewpoint (RV): This step includes traceability
of system elements, design constraints, interfaces, and other design aspects.

4. Behavioral Analysis using the Operational Viewpoint (OV): This focuses on analyzing the
expected system behavior, including a use case analysis and recursive system activity refinement.

5. Development of the Functional Design using the Functional Viewpoint (FV): This includes
defining state machines, refining activities, and achieving complete functional composition.

6. Logical Components Development using the Logical Viewpoint (LV): This involves creating
structural system compositions and interface definitions with port linking for a specific target system.

7. Definition of the Technological Solution of the System using the Technical Viewpoint (TV):
This includes integrating logical architecture elements to bridge the problem space with the solution
space.

8. Realization of the Physical Architecture of the End-User System: This step uses existing or
newly defined implementable physical components and assemblies, including the definition of
physical interfaces.

The following models will simplify the development of a fictional Body Control Unit (BCU). The process begins
at the vehicle level by identifying the required system capabilities, designing the system functions and
interfaces, and developing the functionalities and components at the product level. Finally, these components
are integrated into a physical electronic control unit (ECU), which, among other things, implements a series of
vehicle lighting functions. This serves as an illustrative example of applying the ACMBSE method.

Architecture Centric Model Based Systems
Engineering (ACMBSE)_EN.docx

Page 14 von 26 21. August 2024

VERTRAULICH

9.1 STEP 1 - FEATURE DEFINITION OF THE SYSTEM

Before the developer begins defining a system architecture, it is crucial to have a clear understanding of the
essential attributes that the system or system product line must possess to meet the end user's needs. This
involves analyzing the required Functional and Technical Features, utilizing the previously introduced
Variability Viewpoint (VV) according to the modeling approach described by Forlingieri and Weilkiens (2022).

In line with this understanding, Functional Features characterize a System of Interest (SoI) from a functional
perspective that is understandable to end users or stakeholders who may not have a deep understanding of
system design and behavior. Functional Features represent a synthesis of the needs for an SoI or its
capabilities, serving as the foundation for deriving functional requirements, as also demonstrated by Beuche
et al. (2004) and Forlingieri (2022).

Figure 7: Modeling the Variability Model with Functional and Technical Features

bdd [Variant Management View] FeatureModel [bdd Variability Model Exterior Light]

VehicleFunctionalvariabilityModel
«FunctionalVariabilityModel»

VehicleTechnicalVariabilityModel
«TechnicalVariabilityModel»

Exterior Light Feature
«FunctionalFeature,VP_EXTL_01»

 Provide Short Range Headlight (Low Beam)
 Provide Long Range Headlight (High Beam)
 Provide Vehicle Siluette Illumination (Position Light)
 Provide Vehicle Deceleration Indication (Stop Light)

«mandatory»

Automatic Headlight Feature
«FunctionalFeature,VP_EXTL_02»

 Automatic Headlight Activation (Position Light and LowBeam)
 Activation dependent on environmental light situation

«optional»

Manual Headlight Feature
«FunctionalFeature,VP_EXTL_01»

 Manual Headlight Activation by vehicle operator
 Selection of Position Light and Low Beam or Off

«mandatory»

Environment Light Sensor
«TechnicalFeature,VP_EXTL_02»

 Technical Light Sensor to determine the light intensity
 Capability to define selectable thresholds for Lowbeam,

Position Light activation

«optional»

«includes»

Light Rotary Switch
«TechnicalFeature,VP_EXTL_01»

 Technical Light Switch with positions for Light Off,
Autolight, Position Light and Headlight (Lowbeam)

 Capability to detect switch combination failures for
safety compliance

«mandatory»

Vehicle
«Sy stem»

«satisfy»

ExteriorLightSystem
«VP_EXTL_01,System»

«satisfy»

StaticLightControl
«VP_EXTL_02,ControlSystem»

«satisfy»

«satisfy»

VP_EXTL_01

REGION = All

VP_EXTL_02

REGION = All

REGION = EU

VP_EXTL_03

REGION = All

REGION = US

Architecture Centric Model Based Systems
Engineering (ACMBSE)_EN.docx

Page 15 von 26 21. August 2024

VERTRAULICH

Technical Features characterize a System of Interest (SoI) from a technical perspective regarding performance
and technology, making them understandable to end users or stakeholders who may not have a deep
understanding of the underlying implementation. They represent a synthesis of technical constraints,
performance capabilities, or technological limitations for the desired SoI and serve as the basis for deriving
non-functional technical requirements. Technical Features often constrain the system's characteristics based
on technical boundary conditions and their dependencies on functional features. This dependency (Beuche et
al., 2004; Forlingieri 2022) is illustrated in Figure 7, for example, through the "includes" relationship.

Functional and Technical Features can also be modeled in terms of their variability, as shown in Figure 7,
characterized by dependency relationships such as "mandatory" features, "optional" features, or "alternative"
features, as well as relationships to other features like "exclusive" or "inclusive." For example, in Figure 7, the
"mandatory" "Manual Headlight Feature" and the optional "Automatic Headlight Feature" are depicted, both
realized through a user-perceivable function called "Static Light Control." Additionally, a technical feature that
includes an "Environment Light Sensor" to measure light intensity is an example, demonstrating the "inclusive"
dependency between the given functional and technical features.

Variation points (e.g., "VPA-EXTL-02"), defined at any variation point in the feature hierarchy, can address the
variants. These variation points can subsequently be added to any architecture artifact to clarify the relevance
of a variant of an architectural element, as illustrated in the "Static Light Control" function block. Together, the
modeling tool and the provided profile enable a plausibility check of the model and a visualization of feature-
specific content that can be applied to diagram views in a modeling tool like Rhapsody.

9.2 STEP 2 - SYSTEM & KONTEXT DEFINITION

In the iSEF method, the next step in developing a system architecture is defining the system context, including
the System of Interest (SoI). This is accomplished by modeling the relevant system elements in an operational
block definition diagram (OBDD), which ensures that all actors within the system context are identified.

Figure 8: Context Definition and Functional Light System Identification

ibd [Operational View] ContextDefinition [Vehicle Operational Exterior Light]

OperationalContext
«SystemContext»

OperatingVehicle
1 «System»

VehicleOperator:User
1 «User»

ChangeToOffPosition,
ChangeToAutoPosit ion,
ChangeToTaillightPosit ion,
ChangeToHeadlightPosition

AmbientLightIntensity
1 «EnvironmentalEffect»

ChangeOfLightIntensity

LowBeamLeft
1 «EnvironmentalEffect»

ProvideLowBeamLight

LowBeamRight
1 «EnvironmentalEffect»

ProvideLowBeamLight

PositionLightFrontLeft
1 «EnvironmentalEffect»

ProvidePositionLight

PositionLightFrontRight
1 «EnvironmentalEffect»

ProvidePositionLight

PositionLightRearleft
1 «EnvironmentalEffect»

ProvidePositionLight

PositionLightRearRight
1 «EnvironmentalEffect»

ProvidePositionLight

DashboardIllumination
1 «EnvironmentalEffect»

ProvideDashboardIllumination

ChangeToOffPosition,
ChangeToAutoPosit ion,
ChangeToTaillightPosit ion,
ChangeToHeadlightPosition

ChangeOfLightIntensity

ProvideLowBeamLight

ProvideLowBeamLight

ProvidePositionLight

ProvidePositionLight

ProvidePositionLight

ProvidePositionLight

ProvideDashboardIllumination

Architecture Centric Model Based Systems
Engineering (ACMBSE)_EN.docx

Page 16 von 26 21. August 2024

VERTRAULICH

The next step involves specifying interactions between the SoI and the context elements (actors) using one or
more operational internal block diagrams (OIBDs), as shown in Figure 8, where the "Operating Vehicle" is the
SoI. The gray elements represent the context elements in this definition, as depicted in Figure 8. Identifying
the abstract operational events (at the environmental level) is crucial. Figure 8 illustrates a context definition
that utilizes the operational events for a lighting system.

The Technical Features shown in Figure 7, which form the basis for constructing the SoI, are also utilized and
are particularly important for understanding the SoI. They constrain the subsequent development steps for the
system and subsystems and define the interfaces that must later be physically realized. Predefined operational
events can also be used for the following operational analysis (see Figure 8) to identify user interactions
between the SoI and the context elements, thereby facilitating the consistent definition of use cases. Suppose
interfaces have emerged from a previous architecture step and are thus part of the current system abstraction
level requirements. In that case, they can be incorporated into the architecture as technical and logical
interfaces.

9.3 STEP 3 - RECURSIVE REQUIREMENTS ENGINEERING

Figure 9: Traceability Between Architecture Elements and Requirements

The iSEF method recursively uses the Zig-Zag method (Weilkiens 2008) to create system requirements
combined with the principles of ACMBSE. Figure 8 illustrates the traceability between features, requirements,
and architecture elements at the relevant abstraction level of the system (Seidel & Forlingieri 2023).

trc [Requirement View] Requirements [Requirement Traceability by Systems]

1.1 Manual Light

1.2 Automatic Light
«FunctionalRequirement,VP_EXTL_02»

ID = SYF_EXTL_0003

Within the Exterior Light feature context, the Vehicle as a
system shall support an Automatic Light Functionality that
extends the Manual Light feature when the user set the
vehicle in an automatic light mode which then controls the
Position-/Taillight and Lowbeam Light dependent on the
detected environmental light intensity.

1. Exterior Light

«refineReqt»

Vehicle
«System»«satisfy»

VehicleLightSystemContext
«Sy stemC ontext»

Exterior Light Feature

«deriveReqt»

Automatic Headlight Feature
«FunctionalF eature,V P_EXTL_02»

 Automatic Headlight
Activation (Position Light
and LowBeam)

 Activation dependent on
environmental light
situation

«deriveReqt»

Manual Headlight Feature
«FunctionalFeature,VP_EXTL_01»

 Manual Headlight
Activation by vehicle
operator

 Selection of Position
Light and Low Beam or
Off

«deriveReqt» ExteriorLightSystem
«V P_EXTL_01,Sy stem»

«refine»

StaticLightControl
«V P_EXTL_02,C ontrolSy stem»

«satisfy»
1

PartStaticLightControl

Design an Static Light
Control Function

«refineReqt»

«refine»

«derive»

«Functional Requirement»

«Functional Requirement»

«Functional Feature»

«Functional Feature»

System Abstraction Level Lx+1

System Abstraction Level Lx

«Rationale»

Architecture Centric Model Based Systems
Engineering (ACMBSE)_EN.docx

Page 17 von 26 21. August 2024

VERTRAULICH

Applying the Zig-Zag method works by following the illustrated "Z" in Figure 9: At the initial system abstraction
level (Lx), requirements are created that reflect the scope of the Black-Box system, such as the "Vehicle"
system fulfilling the "Exterior Light" requirement in the example. Next, an architectural step is performed to
decompose the "Vehicle" system into smaller parts or subsystems (as exemplified by "Static Light Control" in
Figure 9). The architectural decisions are documented in rationales, which are also refined from the
requirements of the "Vehicle" system. These rationales form the basis for deriving requirements at the next
system abstraction level (Lx+1) for the subsystems (e.g., StaticLightControl), as illustrated in Figure 9. This
alternation between requirement specification and architectural process is repeated across all system
abstraction levels until a subsystem can be implemented within a single discipline (e.g., electrical/electronic or
software).

9.4 STEP 4 - OPERATIONAL ANALYSIS OF THE SYSTEM

Conducting an operational analysis by modeling use cases is a crucial step in identifying the activities and
state behaviors of the System of Interest (SoI). The Use Case Diagram aids in refining use cases derived from
functional requirements and underlying system activities. These activities can be further refined at various
abstraction levels within the operational analysis. The iSEF guide provides specialized meta-classes for this
purpose, such as System Process, System Use Case, Secondary Use Case, and Continuous Use Case, as
Wilkins (2008) described.

Use case analysis is particularly helpful when subsystems are not yet identified, and it is unclear how the
system should be decomposed. However, if the system decomposition is already predefined due to sufficiently
detailed requirements or technical constraints, use case analysis may not be the most effective approach to
elaborate further information. In such cases, it is more practical to directly break down the SoI into already
identified subsystems and conduct the operational analysis at the next system abstraction level, where no
further structural decomposition is necessary.

Figure 10: Operational Analysis with Underlying System Activities

uc [Operational Package] ExteriorLight [Exterior Light Feature]

Vehicle

Activate Position
Light at Front and
Rear Vehicle Side

«SystemProcess»

Activate Low Beam
Light at Front Vehicle

Side

«SystemProcess»

Activate Manual
Light Function

«SystemUseCase»

Activate
Automatic Light

Function

«SystemUseCase»
«extend»

Detect
Evironmental
Light Intensity

Change

«ContinuousUseCase»

«include»

Determine Light
Switch Change

«SecondaryUseCase»

«include»

PositionLightActivation

LowBeamActivation

User
«User»

ChangeToAutoPosition

ChangeToHeadlightPosit ion,
ChangeToOffPosition,
ChangeToTaillightPosit ion

ChangeToAutoPosition

ChangeToHeadlightPosit ion,
ChangeToOffPosition,
ChangeToTaillightPosit ion

LightIntensity
«EnvironmentalEffect»

ChangeOfLightIntensityChangeOfLightIntensity

ShortRangeIlluminationEffect
«EnvironmentalEffect»

ProvideLowBeamLightProvideLowBeamLight

VehicleSilhouetteIllumination
«EnvironmentalEffect»

ProvidePositionLightProvidePositionLight

Use Case Analysis - Exterior Light Feature

DashboardIlluminationAsIndication
«EnvironmentalEffect»

ProvideDashboardIllumination,
Act ivateStopLightIndicat ionFailureAtDashboard
ProvideDashboardIllumination,
Act ivateStopLightIndicat ionFailureAtDashboard

Architecture Centric Model Based Systems
Engineering (ACMBSE)_EN.docx

Page 18 von 26 21. August 2024

VERTRAULICH

As a distinctive feature of the methodology, the example in Figure 10 shows a use case analysis that reuses
the previously defined operational events to consistently model the events of the given context elements with
the system use cases. The underlying system activity, such as "Low Beam Activation," then represents a
further analysis step for detailed behavior refinement, enabling the creation of state machines.

By modeling with iSEF, it is particularly possible to simulate the intended, though simplified, behavior of
activities and state machines during the analysis phase. This allows system details to be discussed with
stakeholders early on, helping to avoid unnecessary development cycles.

9.5 STEP 5 - DETAILED FUNCTIONAL DESIGN

Following the Harmony principles used as a guide (Douglas 2017) and additional iSEF extensions, system
activities formulated in the previous step of the operational analysis are refined into Essential Activities or Node
Activities and placed into functional block elements (e.g., a Logic Control function block) on the same
abstraction level or one level below. (Details on use case analysis will be further elaborated in a later
whitepaper.) Swimlanes and function blocks modeled in the calling System Activity facilitate the linkage
between operational viewpoint elements and functional elements.

When refining System Activities during the functional design step into executable Node Activities or State
Machines, the operational events from the operational viewpoint are typically transformed into an information
flow using SysML proxy ports. Such interface definitions, as exemplified in Figure 11 (e.g.,
"IAutoLightRequest"), are then implemented through a port of a function block (e.g., "Headlight Control"). Since
most embedded systems contain state machines, the example in Figure 11 will illustrate this concept. The
state machines are detailed by refining previously defined activities and events to utilize and simulate the
targeted data elements, operations, and interfaces. Similarly, the state machine evaluates the "LightRequest"
from Figure 8. Once all data elements and behavior are precisely designed, the system can be simulated to
verify the intended behavior of the function block.

Figure 11: Functional Design of the Low Beam Light Control

bdd [Functional View] FunctionalView [Functional Design Low Beam Control]

HeadlightControlPart
1 «LogicControlPart»

Values

LightRequest:tpLightRequest

LoBmLampStatus:tpStatusTypeITaskControl

pTr

pLowBeamLightOutRi:
ILoBmLightActuation

pLowBeamLightOutLe:
ILoBmLightActuation

pAutoLightRequest:
~IAutoLightRequest

ITaskControl
«Interface,functional»

Operations

Run(cycle:int):void

Suspend():void

Resume():void

Initialize():void

IAutoLightRequest
«interfaceBlock,functional»

Values

«flowProperty» LightRequest(Out):tpLightRequest

ILoBmLightActuation
«interfaceBlock,functional»

Values

«flowProperty» LoBmLampStatus(Out):tpStatusType

stm [Logic Control] HeadlightControl [LightControl]

LightControl

AllLightOff

Reactions

 LoBmLampStatus = Off;

AutoLight

PositionLightOn

Reactions

LoBmLampStatus = Off;

HeadLightOn
«SafeState»

Reactions

LoBmLampStatus = On;

[LightRequest == PosLight]

«SafetyMechanism»

[LightRequest == HeadLight ||
LightRequest == SensorFailure]

[LightRequest != DayLight] [LightRequest == DayLight]

MainLightControl

Architecture Centric Model Based Systems
Engineering (ACMBSE)_EN.docx

Page 19 von 26 21. August 2024

VERTRAULICH

From a functional perspective, it is essential to note that many of the functions developed in iSEF are designed
for high reusability. These functions can be achieved by using ports for communication between functional
elements to ensure the independence of function blocks. In addition to the aspects illustrated in Figure 11 for
the "ITask Control" interface, the functional viewpoint emphasizes predefined interfaces for exchanging
functional values and implementing function calls to support operations (APIs). These APIs are later integrated
into service-oriented interfaces from a logical viewpoint.

9.6 STEP 6 - DESIGN OF LOGICAL COMPONENTS

The primary goal of the logical modeling viewpoint is to organize functional elements into logical units, known
as logical nodes, and integrate these nodes into larger logical systems. These nodes do not contain any
additional explicitly implemented behavior, as all behavioral models have already been developed within the
functional elements. Figure 12 illustrates an example of an integrated "Application Management" component,
which controls other function blocks but does not contribute to additional functional user behavior.

Functional elements can typically communicate within the node with other functionalities using ports. While
this approach is not mandatory, it allows for flexible reorganization of functional elements that can be
developed independently, thereby maximizing the reuse and standardization of the design.

Figure 12: Integration of Function Elements into a Virtual Function Bus Node

ibd [Logical View] LogicalView [FunctionIntegration]

ExteriorLightApplication
«VFB Node»

StoplightControl
1 «LogicControlPart»

AppManagement
1 «LogicControlPart»

pFuncTriggerStop

pFuncTriggerHead

pFuncTriggerPos

HeadlightControl
1 «LogicControlPart»

PoslightControl
1 «LogicControlPart»

StopLightControlRight

Qualifier

StopLightControlLeft

Qualifier

BrakeSwitchStatus

pTaskControl
SleepReady

AutolightRequest

Qualifier

LightSwitchStatus

Qualifier

Posit ionLightControlRearRight

Posit ionLightControlRearLeft

Posit ionLightControlFrontRight

Posit ionLightControlFrontLeft

LowBeamControlRight

LowBeamControlLeft

Qualifier

StopLightControlRight

Qualifier

StopLightControlLeft

Qualifier

BrakeSwitchStatus

SleepReady

AutolightRequest

Qualifier

LightSwitchStatus

Qualifier

Posit ionLightControlRearRight

Posit ionLightControlRearLeft

Posit ionLightControlFrontRight

Posit ionLightControlFrontLeft

LowBeamControlRight

LowBeamControlLeft

Qualifier

Architecture Centric Model Based Systems
Engineering (ACMBSE)_EN.docx

Page 20 von 26 21. August 2024

VERTRAULICH

Functions within an electronic control unit (ECU) must additionally implement constraints when operating on
different operating systems and software frameworks, such as AUTOSAR Classic (2022). However, these
functions should be designed to apply to various target systems to maximize reusability. The adaptation is
accordingly handled within the logical nodes using logical ports, which apply the principles discussed in the
chapter "Linking Elements Between Model Viewpoints."

Full-Ports, typified by Interface Behavior Blocks, enable the internal transformation of functional values to and
from external, standardized, or custom signal and service interface definitions. This principle also allows for
the flexible integration of Simulink blocks from Matlab models (IBM Docu 8.3) or third-party function designs,
which might not directly align with logical interfaces, into logical nodes using the presented linking method.
While logical nodes and their interfaces appear identical from the outside, their internal functional
implementations can vary. Figure 12 illustrates how a logical signal port containing information for “light switch
status” and “qualifier” is functionally linked to the “headlight control,” which in turn connects to the logical output
port through functional values for “left/right low beam control.”

Allocations are typically avoided when linking elements from the functional to the logical view in ACMBSE. Like
object-oriented programming, functional blocks are instantiated within logical nodes, with functional interfaces
connected to signal ports. The internal functional ports reveal nested interfaces to the functional elements, as
illustrated in Figure 12.

The modeling approach demonstrated leads to a highly consistent and fully executable architecture model,
which is crucial for safety-critical applications requiring compliance with the ISO 26262 standard (ISO 1 2018).
When iSEF guidelines are correctly applied, element linking across different model views remains confined to
elements within the same abstraction level, preventing incorrect and non-implementable integrations due to
"level hopping." Predefined decomposition models and specialized stereotypes within the iSefML profile are
provided to facilitate real-time model validation during the design of architectural elements.

9.7 STEP 7 - TECHNICAL SYSTEM DEVELOPMENT

The technical view of a system of interest (SoI) is modeled by integrating components from both software and
hardware disciplines. The Technical Viewpoint primarily provides the interaction between the system's logical
nodes (such as applications) and technical elements like microcontrollers.

It is crucial to examine how the logical nodes communicate with external elements through the processing
unit's technical interfaces (ports) (e.g., driver nodes), as shown in Figure 13.

It should also be noted that each technical interface of the microcontroller represents a Hardware-Software
Interface (HSI), which includes analog or digital inputs and even data interfaces for communication over the
Controller Area Network (CAN) bus. Instead of directly integrating with existing controllers, this model view
focuses on identifying the technically significant interfaces for constructing the controller. The actual
implementation of the existing controller will be carried out in later phases on the physical model view.

For the technical model view, it should be noted that the logical nodes (software components), simplified here,
are integrated through composition, as the focus is on the elements' interaction. In reality, the code generation
and compilation process must be carried out. However, these model views are then represented through
deployment diagrams using the UML profile, where the focus shifts to the software-specific technical and
physical artifacts, which are irrelevant in the system representation here.

Architecture Centric Model Based Systems
Engineering (ACMBSE)_EN.docx

Page 21 von 26 21. August 2024

VERTRAULICH

Figure 13: Implementation of Logical Nodes in a Technical Microcontroller

Modeling the technical architecture according to the iSEF method, particularly with the HSI elements, enables
an executable simulation of logical elements within a processing unit before the software is designed. This
allows for the early verification of technical constraints such as scheduling, resources, and timing in the
development phase. Figure 13 illustrates how the “Exterior Light Application” from Figure 12 is integrated into
the microcontroller architecture and interacts with other logical nodes such as “Energy Management” or
“Communication Stack.” Additionally, a message bus is integrated to route all logical signals.

This approach facilitates the simulation of hardware-dependent safety mechanisms between hardware and
software to verify safety-critical system developments up to ASIL D (ISO 26262, 2018).

The iSEF methods enable the creation of system prototypes even before the actual hardware is available,
which can significantly reduce development costs. However, such detailed modeling challenges the architect's
knowledge and requires a disciplined approach to develop all functional nodes and interface elements fully.
Therefore, a compromise in the modeling scope is often necessary, focusing on the parts of the system that
are essential for understanding and simulation while other parts remain static and not fully executable.

However, it needs to be considered that it is crucial that a model-based modeling approach also requires
appropriate training for the system engineer to learn how to achieve their goals. Therefore, the invenio Systems
Engineering GmbH conducts the necessary training to work effectively with the framework and libraries.

ibd [Technical View] TechnicalView [Composition Logical Nodes into uC]

MicroController32bit
«MC»

ExteriorLightApplication
1 «VFB Node»

PowerManagement
1 «VFB Node»

MessageBus
1 «VIC Node»

LightStatus

WakupReason

ModeRequestCAN

ModeSwitch

ModeRequestExtl

ModeRequestExtl LightRequest
LbLightCommandRight,
LbLightCommandLeft

LightChDrvLeft
1 «VFD Node»

DriverFbChLeftLbLightCommandLeft

LightChDrvRight
1 «VFD Node»

DriverFbChRight

LbLightCommandRight

OperatingSystem
1 «VFB Node»

ModeSwitch

WakupReason
ComStack

1 «VIC Node»

ModeRequestCAN
LightStatus

LightRequest

CANDriver
1 «VFD Node»

WakeupCan

CANframeRx

CANframeTx

WatchdogTrigger PowerOnReset

CANdataStreamRx

CANdataStreamTx ControlFeedbackCh2

ControlFeedbackCh1

PwmSignalCh2

PwmSignalCh1

LightStatus

WakupReason

ModeRequestCAN

ModeSwitch

ModeRequestExtl

ModeRequestExtl LightRequest
LbLightCommandRight,
LbLightCommandLeft

DriverFbChLeftLbLightCommandLeft

DriverFbChRight

LbLightCommandRight

ModeSwitch

WakupReason

ModeRequestCAN
LightStatus

LightRequest

WakeupCan

CANframeRx

CANframeTx

WatchdogTrigger PowerOnReset

CANdataStreamRx

CANdataStreamTx ControlFeedbackCh2

ControlFeedbackCh1

PwmSignalCh2

PwmSignalCh1

Architecture Centric Model Based Systems
Engineering (ACMBSE)_EN.docx

Page 22 von 26 21. August 2024

VERTRAULICH

9.8 STEP 8 - PHYSICAL REALIZATION OF THE ARCHITECTURE

Physical modeling assists system and hardware engineers in the architecture of end products, primarily
electronic control units (ECUs). However, physical modeling could also be applied to design semiconductor
chipsets, document their architecture, or model entire vehicle E/E systems. The iSEF supports this goal in
various ways. It provides model elements to develop microcontrollers based on predefined templates and port
configurations. It also sets up the device for the software and the fundamental system. Furthermore, it helps
precisely define the end-user system, such as the vehicle. For instance, an entire wiring harness is integrated
with models of all control units.

This enables highly complex systems to be integrated and verified in a model by an OEM using the provided
model components from suppliers without the need to build a single prototype. This can lead to significant
development cost savings, as fewer correction loops are typically needed.

Figure 14: Composition of Technical Elements in the Physical Control Unit

Figure 14 illustrates an approach, among other possibilities, for building the hardware architecture of an ECU
based on technical solutions defined by technical elements, as typically determined by a systems engineer. In
this example, the previously designed technical elements (e.g., the technical microcontroller from Figure 13)
are integrated into a physically to-be-developed ECU and connected to the ECU's required ports. With this
architecture, the systems engineer can pass all technical solutions and necessary physical constraints to a
hardware engineer, who designs the physical system (ECU) while considering these constraints.

The iSEF aims to provide many predefined physical standard components in the future to support these
modeling approaches and accelerate the development process.

ibd [Physical View] PhysicalView [Zone Control Unit Integration]

ZoneControlUnit
«ElectronicControlUnit (CU)»

MicroController32bit
1 «MC»

ExteriorLightApplication
1 «VFB Node»

PowerManagement
1 «VFB Node»

OperatingSystem
1 «VFB Node»

CanTransceiver
1 «BI»

CanTxLine

CanRxLine

Watchdog
1 «EW»

WatchdogTriggerLine

PowerOnResetLine

VoltageRegulator
1 «PS»

uCSupplyLine

LogicSupplyLine5V

Oscillator
1 «CA»

ClockLine2

ClockLine1

HighsideDriverLeft
1 «DI»

FeedbackLineCh1

ControlLineCh1

HighsideDriverRight
1 «DI»

FeedbackLineCh2

ControlLineCh2
LowBeamChannelRight

LowBeamChannelLeft

EcuGround

EcuGround

EcuGround

EcuGround

CANlow

CANhigh

PowerSupplyLine

PowerSupplyLine

CanTxLine

CanRxLine

WatchdogTriggerLine

PowerOnResetLine

uCSupplyLine

LogicSupplyLine5V

ClockLine2

ClockLine1

FeedbackLineCh1

ControlLineCh1

FeedbackLineCh2

ControlLineCh2
LowBeamChannelRight

LowBeamChannelLeft

EcuGround

EcuGround

EcuGround

EcuGround

CANlow

CANhigh

PowerSupplyLine

PowerSupplyLine

Architecture Centric Model Based Systems
Engineering (ACMBSE)_EN.docx

Page 23 von 26 21. August 2024

VERTRAULICH

Another approach not covered in this article involves modeling a complete physical architecture for the final
product. For such a use case, the ECU integrates all relevant physical elements into a fully optimized hardware
architecture in this approach. This optimization concerns performance and cost based on technical features
and given technical constraints. The result is a specific hardware design. This type of architecture, also known
as a physical block diagram, enables the development of reusable, standardized physical subcomponents.
This can significantly reduce development time when solutions are known and can be architecturally
assembled from modular elements. This approach is particularly advantageous for large platforms in
automotive manufacturing, as it can significantly streamline development. However, a significant initial
investment is required to create these modular elements.

10 CONCLUSION AND OUTLOOK

In the coming years, significant changes in vehicle electronics will intensify the need for scalable, flexible
platforms for system development, including the transition to the next generation of E/E architecture (Seidel &
Forlingieri 2023). To meet this new and challenging context, a system architecture development approach that
goes beyond current rules and traditional document-based methods. The ACMBSE approach presented in this
article, implemented in the invenio Systems Engineering Framework, emphasizes the central role of system
architecture in model-based development. The author has highlighted the importance of building and
implementing this architectural approach in this article by introducing several key guiding principles:

(1) Developing a modeling framework like iSEF is essential for coherent and efficient development
across various engineering departments. This practice can also be applied in other industries, as
seen with Airbus adopting MOFLT (Ducamp et al., 2022). Applying ACMBSE principles can
overcome challenges such as improved architectural understanding, component definition, and
sustainable communication within the team and with stakeholders.

(2) The white paper emphasizes the importance of establishing various yet interconnected model
viewpoints during system development. The iSEF framework provides seven fundamental model
viewpoints, similar to analogous frameworks (Roques 2016; Ducamp et al., 2022), allowing
system design from different perspectives and seamless integration from system to software
architecture. In the automotive sector, this method extends from vehicle integration to ECU
development, covering all essential architectural aspects and serving as a bridge for the overall
product description.

(3) The author systematically demonstrated one of the many potential applications of iSEF and the
introduced viewpoints. A fundamental principle of MBSE for establishing modeling can be
achieved in iSEF by applying the principles of linking views presented in this article. While not all
viewpoints and system abstraction levels are always required simultaneously, different aspects
of the same viewpoint can be utilized during the development of complex systems, such as
vehicles.

Although this white paper primarily focused on the analysis and design phase of system development using
ACMBSE, it illustrated the modeling of a system architecture in 8 simple steps. However, one critical aspect
remains model-based verification and validation. Ensuring the precision and coherence of a complex system
architecture requires the verification of the model's semantic and syntactic accuracy and the consistency
between the interacting model components. Therefore, future tools, including the iSEF, should incorporate
technical procedures such as Just-in-Time model checks, which implement the framework's underlying
methods and validation mechanisms and make them easily applicable to the user.

Architecture Centric Model Based Systems
Engineering (ACMBSE)_EN.docx

Page 24 von 26 21. August 2024

VERTRAULICH

Another vital point briefly mentioned by the author is modeling the variability of functional and technical
features, which considers the desired characteristics in product line development from the beginning. However,
the article's goal was not to show how these features can be systematically modeled and used to develop
multiple product variants. Following the example of Forlingieri and Weilkiens (2022), a future article could
demonstrate how variant modeling can be realized across various viewpoints and abstraction levels using
iSEF.

In conclusion, this article highlights the architecture-focused model-based aspect of system development,
represented exclusively within the modeling tool. However, it is essential to emphasize the importance of using
the system model as a bridge to connect with other domain-specific disciplines within the engineering lifecycle.
MBSE does not replace requirements management, test management, software development, or the
mechanical discipline. Instead, iSEF enables the seamless integration of these disciplines through an
overarching model, facilitating a seamless and coherent system development process. The invenio Systems
Engineering Framework (iSEF) has taken the first steps toward achieving this goal through architecture-centric
model-based systems engineering (ACMBSE).

Architecture Centric Model Based Systems
Engineering (ACMBSE)_EN.docx

Page 25 von 26 21. August 2024

VERTRAULICH

11 REFERENCES

Autosar Classic 2022, AUTOSAR Classic Platform, release November 2022
<https://www.autosar.org/standards/classic-platform>

Beuche, D, Papajewski, P, Schröder-Preikschat, W. Variability management with feature models, Science of
Computer Programming, Volume 53, Issue 3, 2004, Pages 333-352.

Brooks M. D., Wheeler T.M. 2007. Experiences in Applying Architecture-Centric Model-Based System
Engineering to Large-Scale, Distributed, Real-Time Systems
<https://www.mitre.org/sites/default/files/pdf/07_0838.pdf > Pub. 2007 Computer Science

Burkacky, O, Kellner, M, Deichmann, J, Keuntje, P and Werra, J. 2021, Rewiring car electronics and
software architecture for the ‘Roaring 2020s’. McKinsey & Co

Douglas, B, P 2017. Harmony a MBSE Deskbook Version 1.00 Agile Model-Based Systems Engineering
Best Practices with IBM Rhapsody. IBM Corporation

Ducamp, C, Bouffaron, F, Ernadote, D, Wirtz, J and Darbin, A. 2022. MBSE approach for complex industrial
organization program. INCOSE International Symposium, pp. 839-856.

Forlingieri, M 2022. 'The four dimensions of Variability and their impact on MBPLE: How to approach
variability in the development of aircraft product lines at Airbus'. Proceedings of the 16th International
Working Conference on Variability Modeling of Software-Intensive Systems (VAMOS ’22), February 23–25,
2022, Florence, Italy. ACM, Vamos.

Forlingieri, M. Weilkiens, T. 2022. 'Two Variant Modeling Methods for MBPLE at Airbus'. INCOSE
International Symposium, vol. 32, no. 1, pp. 1097-1113.

Friedenthal, S. Moore, A, Steiner, R. 2015. A Practical Guide to SysML: The Systems Modeling Language.
The MK/OMG Press, 3rd Edition

IBM 2022, IBM Engineering Systems Design Rhapsody, viewed 13 December 2022
<https://www.ibm.com/products/systems-design-rhapsody>

IBM Docu 8.3, Integrating Rational Rhapsody and the MathWorks Simulink
< https://www.ibm.com/docs/en/elms/esdr/8.3?topic=tools-integrating-rational-rhapsody-mathworks-
simulink>

ISO 26262-3:2018. Road vehicles — Functional safety — Part 3:
Concept phase, release 2018

ISO/IEC 26550:2015. Software and systems engineering — Reference model for product line engineering
and management.

ISO/IEC 26580:2021. Software and systems engineering — Methods and tools for the feature-based
approach to software and systems product line engineering.

ISO/IEC/IEEE 15288:2015, Systems and software engineering — System life cycle processes

ISO/IEC/IEEE 42010:2022. Software, systems and enterprise — Architecture description

Nayak, J, Mishra M, Naik, B, Swapnarekha, H, Cengiz, K, Shanmuganathan, V. 2022. An impact study of
COVID-19 on six different industries: Automobile, energy and power, agriculture, education, travel and
tourism and consumer electronics. Expert Systems, vol. 39, no.3

OMG 2018, OMG Systems Modeling Language (OMG SysML), Version 1.6.

Seidel, E. Forlingieri, M. 2023, Moving towards Server-Zone Architecture with MBSE at Continental, INCOSE
International Symposium.

Architecture Centric Model Based Systems
Engineering (ACMBSE)_EN.docx

Page 26 von 26 21. August 2024

VERTRAULICH

TOGAF 10, The TOGAF Standard, 10th Edition, Version C220
<https://publications.opengroup.org/standards/togaf/specifications/c220>

UDPM 2017, UPDM Unified Profile for DoDAF and MODAF, Version 2.1.1
<https://www.omg.org/spec/UPDM/2.1.1/PDF>

Weilkiens, T. 2008, Systems Engineering with SysML/UML: Modeling, Analysis, Design, The MK/OMG Press

Weilkiens, T. (2020). SYSMOD - The Systems Modeling Toolbox: Pragmatic MBSE with SysML. MBSE 4U,
3rd Edition

Zachman 2023, The Zachman Framework, Version 16.1
<https://sparxsystems.com/resources/user-guides/16.1/model-domains/frameworks/zachman.pdf>

12 BIOGRAPHY

Enrico Seidel is a Senior Consultant at invenio Systems Engineering GmbH and is
currently responsible as an expert for model-based development. As a technical
architect, he leads the development of the iSEF. Previously, he was a Senior
Technical Expert for Continental Automotive Singapore in Systems Engineering
(SE). Within the Business Area (BA) Architecture and Networking, he was
responsible for defining the SE working principles in the Engineering Excellence
group. With over 17 years of experience in Systems Engineering, he co-developed
the Capability Architecture Framework (CAF) with his team and is now advancing
the ideas of MBSE with the successor product, iSEF, at invenio AG.

