

VERTRAULICH

Whitepaper
INTEGRATED SYSTEMS, SOFTWARE, AND HARDWARE
ENGINEERING TO OVERCOME ENGINEERING SILOS

VERSION DATE AUTHOR CHANGES

1.0 30.09.2024 Enrico Seidel Translation from 1.0 GE

Integriertes Systems-, SW and HW Engineering
zur Überwindung der Engineeringsilos_EN.docx

Page 2 von 11 30. September 2024

VERTRAULICH

CONTENT

Summary .. 3
1 Introduction .. 3
2 Challenges in Overcoming Engineering Silos .. 3
2.1 Lack of Proper Technical Communication ... 3
2.2 Redundant Efforts and Resulting Inefficiencies ... 4
2.3 Inconsistent Data and Models .. 4
2.4 Delayed Problem Identification .. 4
2.5 Limited Reusability ... 5
2.6 Hindrance of Innovation Due to Lack of Competence ... 5
3 The invenio Systems Engineering Framework ... 6
3.1 The Three Dimensions of the iSEF Architecture Description... 6
3.1.1 The Viewpoints of iSEF .. 7
3.1.2 Linking Elements Between Viewpoints .. 7
3.1.3 The Abstraction Levels of iSEF .. 8
3.1.4 Hierarchy Depth (Hierarchical Model Depth) ... 8
3.2 Methodical Modeling Steps for System Design ... 9
4 Excellence Through Applied Systems Engineering ... 9
5 Research Needs and Outlook ... 10
6 References .. 11

Integriertes Systems-, SW and HW Engineering
zur Überwindung der Engineeringsilos_EN.docx

Page 3 von 11 30. September 2024

VERTRAULICH

Summary

The growing complexity of modern systems requires a shift from isolated engineering silos to an integrative
approach that encompasses all engineering disciplines. The invenio Systems Engineering Framework (iSEF)
by invenio AG bridges the gaps between systems, software, and hardware engineering with a new
development tool, effectively implementing a newly formulated architecture-centered model-based systems
engineering (ACMBSE). By formally and systematically linking all model views and abstraction levels within
the architecture, the iSEF promotes interdisciplinary collaboration and ensures a coherent development
process. Additionally, a practice-oriented ACMBSE engineering training program is currently being developed
to support the resolution of engineering silos.

1 INTRODUCTION

The convergence of advanced technologies in the automotive, aerospace, and other high-tech industries has
led to unprecedented system complexity recently [3]. Traditional engineering approaches, often characterized
by document-oriented, isolated work within disciplines (silos), have struggled to manage this complexity
effectively. The seamless integration of Systems Engineering (SE), Software Engineering (SWE), and
Hardware Engineering (HWE) is therefore more important than ever.

In response to this challenge, invenio Systems Engineering GmbH introduces a framework (iSEF). By linking
model views across all system abstraction levels, this framework highlights the strengths of architecture-
centered model-based systems engineering (ACMBSE) and enables comprehensive and coherent
architecture descriptions [5].

This white paper provides an overview of the fundamental principles of iSEF, its practical application in the
automotive domain as an example [4], and the benefits of breaking down silos to achieve synergies between
engineering domains.

2 CHALLENGES IN OVERCOMING ENGINEERING SILOS

Historically, systems, software, and hardware engineering developed independently, each with its own
methods, tools, and cultures, particularly concerning requirements and architecture [6,7]. This separation often
led to misinterpretations, redundant documentation, and inefficiencies. In complex projects with significant
dependencies between systems, software, and hardware, the lack of integration capability becomes
problematic. Text-based requirements engineering often remained the only link for communication between
these disciplines [4]. Therefore, traditional document-based approaches are no longer sufficient. An
architecture-centered, model-based approach (ACMBSE) based on MBSE principles, supported by a robust
framework like iSEF, is essential to address these challenges. The following will outline some key aspects of
these challenges and their possible solutions [3].

2.1 Lack of Proper Technical Communication

One of the greatest challenges developing in engineering silos is the lack of effective communication and
coordination between engineering disciplines, which creates barriers to collaboration.

Different methods, tools, languages, and notations lead to misunderstandings and miscommunication,
complicating the alignment of technical content between teams. This results in fragmented knowledge and
disconnected development artifacts, which can significantly hinder the efficiency and effectiveness of
engineering projects.

Integriertes Systems-, SW and HW Engineering
zur Überwindung der Engineeringsilos_EN.docx

Page 4 von 11 30. September 2024

VERTRAULICH

Therefore, a shared technical language is crucial. The graphical notation UML/SysML [8], when properly
learned and applied, greatly facilitates communication, as a systematically created visual representation can
significantly better illustrate the relationships of system behavior or structure than textual requirements [9].
This also significantly improves communication efficiency, as engineers no longer need to mentally "model"
their own view of the system's structure and behavior to comprehensively understand the behavior of a system
element [10].

2.2 Redundant Efforts and Resulting Inefficiencies

Isolated engineering teams often generate duplicated efforts and redundant work, as they tend to address the
same problem independently across different projects. This redundancy wastes resources, increases
development costs, and delays project timelines, particularly in large development projects.

The solution is again an architecture-centered model-based approach (ACMBSE) [3], where system
components are decomposed and structured according to model decomposition principles. By applying
procedures for creating standardized interfaces and services within an interface database, reusable model
components can be established, significantly enhancing the efficiency of platform projects [11].

2.3 Inconsistent Data and Models

The most important principle, which is quickly forgotten in the hustle and bustle of projects, is the Single Source
of Truth (SSOT) [12]. Without a unified work environment and methodology for creating the necessary
engineering artifacts, different teams develop incompatible models, complicating the integration and validation
processes. This inconsistency often leads to malfunctions due to faulty designs [6,7].

A model-based and systematically maintained source of information significantly enhances efficiency and
reduces the effort required for data collection, as long as it is ensured that all team members always have
access to up-to-date data. This ultimately minimizes the risk of project errors. Furthermore, It is crucial that all
disciplines work with a methodology and unified processes coordinated between the disciplines [6]. An
engineering framework that prescribes this way of working is therefore becoming increasingly important for
implementing structured work with SSOT data.

2.4 Delayed Problem Identification

In isolated development teams and engineering environments, cross-disciplinary problems often are
undetected until late in the development cycle. Hardware limitations that impair software performance might
only be discovered during the integration phase, making their resolution more costly. Engineering silos further
hinder the necessary visibility and communication [13].

A unified cross-disciplinary method in model creation can provide a remedy. This requires that the software
and hardware architecture models be derived from a common system model. The best results are achieved
when all disciplines work within the same model and follow the same set of rules. It is particularly important to
precisely define the Hardware-Software Interface (HSI) [5]. Additionally, executable functional models at both
the system and discipline levels enable early evaluation of system behavior. However, this requires disciplined
project management to allocate time for verifying the architecture before commencing actual development.

Integriertes Systems-, SW and HW Engineering
zur Überwindung der Engineeringsilos_EN.docx

Page 5 von 11 30. September 2024

VERTRAULICH

2.5 Limited Reusability

A development team that lacks foresight and only thinks within the context of its own project limits the reuse
of created components and designs. Teams often develop custom solutions for successive projects repeatedly,
rather than using existing components, improving them, and making them available again to the development
pool. This reduces overall efficiency, as teams are unable to benefit from previously solved problems and
tested solutions.

A solution is to establish an organizational structure that focuses on functional development and makes these
solutions available to platform teams. These teams then develop technical solutions that can be reused in
various future customer projects. However, this requires management foresight, including making initial
investments that will pay off through the use of validated and quickly integrable artifacts. The prerequisites for
this include appropriate integration reference models and integration specifications. iSEF supports this
integration with pre-built model libraries.

2.6 Hindrance of Innovation Due to Lack of Competence

Innovation thrives in environments where diverse perspectives and ideas can mutually influence one another.
However, based on the author's experience, many systems engineers lack sufficient understanding of the
challenges faced in hardware and software disciplines and create highly abstracted system models that offer
little benefit to discipline engineers. Furthermore, customer requirements are often inadequately analyzed,
leaving the true requirements unclear and shifting problems down to the discipline level.

Good system design requires a deep technical understanding of the system to be developed and the resulting
system architecture, along with the subsequent work of hardware and software engineers. This knowledge
should be imparted through interdisciplinary and technically sound training that includes essential foundations
in both software and hardware disciplines. Existing programs such as CSE [14], INCOSE certifications [15], or
training for "Embedded System Architect" [16] offer the right approaches but lack the practical aspect of
creating a system architecture that can be further utilized across disciplines.

At invenio Systems Engineering GmbH, we are currently developing a training program based on the ACMBSE
approach. iSEF serves as the technical foundation for modeling in this program. The training will consist of
four levels and will be similar to the OCSMP program by OMG [17].

- Applied System Modeling with iSefML – Fundamentals and ACMBSE Methodology

- Applied System Modeling with iSEF – Formal System Analysis & System Design

- Applied System Modeling with iSEF – Behavioral Modeling of Complex Systems

- Applied System Modeling with iSEF – Development of Domain-Specific Model Libraries

Integriertes Systems-, SW and HW Engineering
zur Überwindung der Engineeringsilos_EN.docx

Page 6 von 11 30. September 2024

VERTRAULICH

3 THE INVENIO SYSTEMS ENGINEERING FRAMEWORK

The invenio Systems Engineering Framework (iSEF) provides essential solutions for overcoming engineering
silos by introducing a unified technical language and methodology based on UML/SysML [8]. Currently
implemented in IBM Rhapsody, it enables user-guided, structured storage of model components, resulting in
a coherent data model. Supported by customizable model checks, iSEF ensures that all disciplines work
consistently. A shared system model also promotes the early detection and resolution of potential issues,
facilitating system integration and validation. Furthermore, iSEF supports the efficient development of reusable
components through reference models and specifications.

3.1 The Three Dimensions of the iSEF Architecture Description

As system complexity increases [1], systems need to be divided and organized into smaller units or
subsystems. Each subsystem has a specific function, allowing architects and designers to focus on the details
of that particular part. To facilitate this, iSEF introduces three dimensions of system architecture based on the
work in [4,5]: the different views on the system (Viewpoints), the abstraction of a system (System Abstraction
Levels), and the decomposition granularity (Hierarchy Depth). These three orthogonal dimensions enable a
structured approach in which all architecture elements are formally stored in a virtual 3D space, as shown in
Figure 1. To facilitate understanding, only specific sections (viewpoints) are shown by the modeler, with all
elements transposed onto a 2D space according to UML/SysML [8] (see Figure 1).

Figure 1: The Three Dimensions of System Architecture Description

bdd [Package] iSEF [The 3 Dimensions of an Architecture]

FunctionA

FunctionA1ElementB

ElementA

System Abstraction Levels
[1..5]

Architecture Viewpoints
[1..5]

Hierarchy Depths
[1..n]

User Domain Level (L-UD)

Environment Level (L-EV)

Domain System Level (L-SS)

System Product Level (L-SP)

Product Component Level (L-PC)

Operational Modeling Viewpoint (OV)

Functional Modeling Viewpoint (FV)

Logical Modeling Viewpoint (LV)

Technical Modeling Viewpoint (TV)

Physical Modeling Viewpoint (PV)

FunctionA

itsFunctionA11 itsFunctionA21

Hierarchy Level 2 Hierarchy Level 2

Element of Hierarchy Level 1

Example

ElementC

e.g. Vehicle Environment Level

e.g. Vehicle Level

e.g. Vehicle System Level

e.g. ECU and Device Level

e.g. SW/HW Component Level

e.g. Vehicle Context, USe Cases

e.g. Functional Design, Functions Chain

e.g. Logical Node Implementation

e.g. Technical System Components

e.g. Wire Harness, Vehicle Integrat ion

Integriertes Systems-, SW and HW Engineering
zur Überwindung der Engineeringsilos_EN.docx

Page 7 von 11 30. September 2024

VERTRAULICH

3.1.1 The Viewpoints of iSEF

As part of the development of this framework [2], five architecture-relevant viewpoints were identified according
to Figure 1 to analyze, define, and create a system with a strong focus on reusability: the Operational
Viewpoint, the Functional Viewpoint, the Logical Viewpoint, the Technical Viewpoint, and the Physical
Viewpoint [5]. The iSEF rule set defines which type of element may be created on which viewpoint and
corresponding abstraction level. The Rhapsody tool, with the iSEF profile, supports correct modeling through
stringent user guidance.

3.1.2 Linking Elements Between Viewpoints

To ensure a coherent architecture description across all viewpoints, iSEF introduces extended SysML
notations and semantics. Elements from different viewpoints are linked together [5]: functional elements are
integrated into logical ones, which are then composed into technical elements, and finally into physical
structural elements. This linking is achieved through interfaces (ports), as shown in Figure 2, which connect
across the viewpoints [5]. This formal interplay of element composition and interface connections ultimately
allows for formal modeling with automated consistency checks using an interactive model checker during the
modeling process.

Figure 2: Linking of Elements and Interfaces Across Sequential Viewpoints

bdd [Help Page] MatryoshkaPrinciple [Architecture View Element Linking via Nested Ports]

FunctValue
«V alue»

Values

value:type

IvFunctValue
«in terfaceBlock, func t ional»

Values

«flowProperty» value(Out):Func...

LogicalSignal
«S ignal»

Values

value:FunctValue

TechnicalLine
«Line»

Values

signal:LogicalSignal

ItTechnicalLineTx
«in terfaceBehaviorBlock,t echnical»

Values

«flowProperty» line(Out):Techn...

signal
«logical,proxy»

PhysicalLead
«Lead»

Values

line:TechnicalLine

IpPhysicalLeadTx
«in terfaceBehaviorBlock,physical»

Values

«flowProperty» lead(Out):Physi...

line
«technical,proxy»

Interface Definitions for Ports (Matryoshka Principle) according CafML

IsLogicalSignalTx
«in terfaceBehaviorBlock,logical»

Values

«flowProperty» signal(Out):Logi...

value
«functional,proxy»

Devicet:PhysicalArchitectureElement
1 «A D»

Component:TechnicalArchitectureElement
1 «GD»

Node:LogicalArchitectureElement
1 «VCN»

Function:FunctionalArchitectureElement
1 «A ctuationFunc tionPart»

Activity

FunctionalPort
«proxy,functional»

value
«functional,proxy»

value:FunctValue

LogicalPort
«logical,ful l»

signal
«logical,proxy»

signal:LogicalSignal

TechnicalPort
«technical,full»

line
«technical,proxy»

line:TechnicalLine

PhysicalPort
«physical,full»

value:FunctValue signal:LogicalSignal line:TechnicalLine

Integriertes Systems-, SW and HW Engineering
zur Überwindung der Engineeringsilos_EN.docx

Page 8 von 11 30. September 2024

VERTRAULICH

Thanks to this method, formal consistency of interfaces is achieved through nested port modeling, where Proxy
Ports are embedded in full ports via the interface definition of an Interface Behavior Block [5]. Functional values
are encapsulated by logical signals and transmitted over technical interfaces, which are bound to physical
interfaces. Functional, logical, technical, and physical ports reflect the interfaces to their respective preceding
viewpoints. This principle is also known as the “Matryoshka” principle.

The methodology of embedding elements from one viewpoint into the subsequent one provides the most
robust formal solution for linking all viewpoints and is the central key to architecture modeling in iSEF.
Particularly for systems requiring high-functional safety up to ASIL C/D, this method ensures conformity with
the requirements of ISO 26262.

Another advantage resulting from the ACMBSE method is the flexible composition of reusable structures
across viewpoints, as the shown interfaces of an Interface Behavior Block [5] also perform a transformation
role. This allows a component's logical interface to appear constant externally, even if an internal value
transformation occurs within the interface, for example, when a functional block with a similar but not identical
interface is embedded. Modeling tools implementing this method can apply these principles to automate
notations and semantic verifications, achieving machine-based model verifiability.

3.1.3 The Abstraction Levels of iSEF

The functional and technical scope of a system, as well as the depth of analysis into the system, is defined by
System Abstraction Levels [4], which represent an artificial demarcation rather than an inherent property of the
system. These levels serve as a classification for any possible system. On the other hand, a system abstraction
level may pertain to the process of generalizing the physical, spatial, or temporal details of a system, or the
abstraction may focus on a user-perceived model or representation of physical information.

In iSEF, this artificial demarcation is divided into five System Abstraction Levels: the Environment Abstraction
Level (L-EV), the User Domain Abstraction Level (L-UD), the Domain System Abstraction Level (L-DS), the
System Product Abstraction Level (L-SP), and the Product Component Abstraction Level (L-PC). A detailed
description can be found in [4], and an example representation of the scope of the abstraction levels is provided
in Figure 1. Any system and its subsystems can be classified into one of the abstraction levels [2]. When
decomposing a system, a subsystem can immediately be assigned to a lower abstraction level if no further
hierarchy is applied. The development always begins at the level of the system context, the System of Interest.

System abstraction levels offer several advantages: they enable the derivation of new system contexts from
subsystems with clear interactions between system elements such as functions, nodes, and components, and
they prevent "level-hopping" between elements of different abstraction levels. Additionally, they allow for the
implementation of machine-verifiable decomposition rules for architecture elements at the respective
abstraction levels, based on mandatory decomposition models. This ensures that teams adhering to these
rules consistently create compatible system structures.

Supported by standardized interfaces from the iSEF libraries, architectures are thus created that enhance
communication between development teams and provide reusable system components.

3.1.4 Hierarchy Depth (Hierarchical Model Depth)

When a system is analyzed on a specific abstraction level and modeled across all viewpoints, this is referred
to as a Full Architecture Step. Within this step, system, and functional components may exhibit different levels
of granularity across the viewpoints.

Integriertes Systems-, SW and HW Engineering
zur Überwindung der Engineeringsilos_EN.docx

Page 9 von 11 30. September 2024

VERTRAULICH

The hierarchical model depth [4] thus defines the granularity of the decomposition of a system within a specific
viewpoint's system abstraction level. To keep the decomposition straightforward, a preferred hierarchical depth
of one is recommended. However, the hierarchical depth between viewpoints within a system abstraction level
does not have to be constant, as granularity can vary depending on the decomposition scheme.

To ensure a standardized system architecture, iSEF offers a series of reference models that guide architects
in designing system components across the viewpoints in such a way that a reusable architecture step can be
easily modeled. An example representation of the hierarchical model depth is provided in Figure 1.

3.2 Methodical Modeling Steps for System Design

Building on the three dimensions of architecture description, as outlined in [18], system modeling with
ACMBSE and iSEF is made possible through eight fundamental steps. These include feature definition,
requirement derivation, system context definition, behavior analysis, functional design, logical component
development, technical system development, and the realization of the physical architecture.

When the method presented in [18] is correctly applied, it results in an architecture description that can be
coherently represented across all abstraction levels and viewpoints, extending to the discipline-specific
architectures of hardware and software.

Naturally, it is not always practical to model the entire 3D space of elements. Rather, the right balance is
needed [2], focusing on essential paths within the modeling space. The tailoring schemes included in iSEF
assist the modeler in identifying the necessary path and representing all critical elements effectively.

4 EXCELLENCE THROUGH APPLIED SYSTEMS ENGINEERING

An essential aspect for the proper development of a system architecture is not only the provided framework
and model libraries, but also the appropriate training of engineers to use these tools correctly. This approach
helps to break down engineering silos and promotes a coherent way of working. A training program, as
suggested below, can teach the relevant methodology. It should provide a solid foundation in the ACMBSE
approach, which is then trained in practical exercises using modeling tools. The key elements of this training
should cover the following content:

 Fundamentals of architecture-centered systems engineering, focusing on the principles of ACMBSE
as outlined in this paper

 Specializations of the extended iSEF modeling language based on SysML/SysML V2 and UML,
covering all engineering disciplines

 Teaching and applying all decomposition models of the corresponding model views and integrating
them into a coherent model

 Application of the ACMBSE-trained methodology and notation in the implementation of given
architectures, specifically in EE development

 Detailed modeling of simulation-capable functional model structures from scratch using existing
iSEF functional blocks

 Modeling of technical and physical system architectures that can be seamlessly transferred into
disciplinary architectures

Integriertes Systems-, SW and HW Engineering
zur Überwindung der Engineeringsilos_EN.docx

Page 10 von 11 30. September 2024

VERTRAULICH

 Modeling of eco-system architectures and cloud-based systems to implement currently existing
systems

 Training and fostering interdisciplinary collaboration between software and hardware disciplines and
the overarching systems engineering discipline

 Creation of an end-to-end model from system concept to realization within disciplines during the
course, through group work and self-study

A central role in this process is establishing the ability for all system and discipline engineers to collaborate,
understand, and read the modeled content of other disciplines. Moreover, engineers should create their own
models in such a way that they are comprehensible and usable for the respective other disciplines, conveyed
in the same language.

5 RESEARCH NEEDS AND OUTLOOK

The invenio Systems Engineering Framework (iSEF) addresses the challenges of overcoming engineering
silos by promoting an integrated approach that links different perspectives and strengthens collaboration
between the disciplines of systems engineering, software engineering, and hardware engineering. Through
the use of abstraction levels and model views, coherent data models are ensured, effectively breaking down
silos within engineering. This not only improves communication and coordination between engineering teams
but also enhances the ability to identify and resolve cross-disciplinary issues early on, ensures data
consistency, and promotes the reuse of components and artifacts—ultimately driving innovation and efficiency
in projects.

An efficient application of the iSEF requires not only adherence to its rules, but also an initial investment in
creating out-of-the-box model libraries. In the coming months, further development work is required,
particularly in domain-specific signal libraries and basic functional building blocks. Once the foundational
libraries are in place, a “Model Store” is envisioned to provide users with an extensive ecosystem of
standardized and compatible model libraries, developed by and with the systems engineering community.

Another important aspect is the future use of generative artificial intelligence (AI) in the analysis and modeling
of systems. Initial research is currently being conducted to explore the use of AI agents. These agents can
assist in evaluating models for plausibility and take over repetitive tasks in the creation of interfaces and
standardized system components. The deployment of AI enables efficient creation and adaptation of these
models, resulting in significant quality and time benefits for system development.

To promote broader application of this framework, additional training programs should be developed in
collaboration with universities, and the methodology should be didactically systematized. Practical training
plays a crucial role in ensuring that engineers acquire the necessary skills and knowledge for efficient use of
the iSEF.

Integriertes Systems-, SW and HW Engineering
zur Überwindung der Engineeringsilos_EN.docx

Page 11 von 11 30. September 2024

VERTRAULICH

6 REFERENCES

[1] T. Weilkiens, Systems Engineering mit SysML/UML: Anforderungen, Analyse, Architektur. Mit einem Geleitwort von
Richard Mark Soley. Heidelberg, Germany: dpunkt.verlag, 2014.

[2] T. Weilkiens, SYSMOD - The Systems Modeling Toolbox - Pragmatic MBSE with SysML. Morrisville, NC:
Lulu.com, 2016.

[3] M. D. Brooks and T. M. Wheeler, "Experiences in Applying Architecture-Centric Model-Based System Engineering
to Large-Scale, Distributed, Real-Time Systems," in Proceedings of the 2007 IEEE/ACM International Conference
on Software Engineering (ICSE 2007), 2007.

[4] E. Seidel and M. Forlingieri, "Moving towards Server-Zone Architecture with MBSE at Continental," in INCOSE
International Symposium, Hawaii, USA, Jul. 2023. [Online]. Available: https://www.incose.org/symposium2023.

[5] E. Seidel and M. Forlingieri, "Architecture-Centric Model-Based Development At Continental," in Proceedings of the
AOSEC International Symposium, Bangalore, India, Oct. 2023. [Online]. Available: https://www.aosec2023.org.

[6] "Systems and software engineering — Architecture description," ISO/IEC/IEEE 42010:2011, 2011.

[8] "OMG Systems Modeling Language Version 1.6," OMG SysML, Dec. 2019. [Online]. Available:
https://www.omg.org/spec/SysML/1.6.

[9] "Study of Modern Modeling Techniques for Model-Based Systems Engineering Methodologies," IJERT, Feb. 2023.
[Online]. Available: https://www.ijert.org/study-of-modern-modeling-techniques-for-model-based-systems-
engineering-methodologies.

[10] "Mastering State Diagrams in UML: A Comprehensive Guide," Visual Paradigm Guides, 2023. [Online]. Available:
https://guides.visual-paradigm.com/mastering-state-diagrams-in-uml-a-comprehensive-guide/.

[11] "Engineering Silos," Heykona, 2023. [Online]. Available: https://www.heykona.com/blog/engineering-silos.

[12] "Reimagining Engineering to Deliver More Projects More Efficiently," McKinsey & Company, 2023. [Online].
Available: https://www.mckinsey.com/capabilities/operations/our-insights/reimagining-engineering-to-deliver-more-
projects-more-efficiently.

[13] A. de Waal, M. Weaver, T. Day, and B. van der Heijden, "Silo-Busting: Overcoming the Greatest Threat to
Organizational Performance," Sustainability, vol. 11, no. 23, Article 6860, Dec. 2019. [Online]. Available:
https://doi.org/10.3390/su11236860.

[14] "Systems Engineering," OOSE. [Online]. Available: https://www.oose.de/unsere-themen/systems-engineering.

[15] "Certification," INCOSE. [Online]. Available: https://www.incose.org/certification. [Accessed: June 7, 2024].

[16] G. Muller, L. van Veen, and J. van den Aker, "Systems Engineering Education: From Learning Program to
Business Value," MDPI Systems, 2023.

[17] "OCSMP Certification," OMG. [Online]. Available: https://www.omg.org/certification. [Accessed: June 7, 2024].

[18] E. Seidel "Architecture-Centric-Model-Based-Systems-Engineering-ACMBSE" invenio. [Online].
Available:https://www.invenio.net/systems-engineering/wp-content/uploads/sites/7/Architecture-Centric-Model-
Based-Systems-Engineering-ACMBSE_DE.pdf. [Accessed: October 30, 2024].

